Malic Acid in Wine: Origin, Function and Metabolism during Vinification

نویسندگان

  • H. Volschenk
  • H.J.J. van Vuuren
چکیده

The production of quality wines requires a judicious balance between the sugar, acid and flavour components of wine, i -Malic and tartaric acids are the most prominent organic acids in wine and play a crucial role in the winemaking process, including the organoleptic quality and the physical, biochemical and microbial stability of wine. Deacidification of grape must and wine is often required for the production of well-balanced wines. Malolactic fermentation induced by the addition of malolactic starter cultures, regarded as the preferred method for naturally reducing wine acidity, efficiently decreases the acidic taste of wine, improves the microbial stability and modifies to some extent the organoleptic character of wine. However, the recurrent phenomenon of delayed or sluggish malolactic fermentation often causes interruption of cellar operations, while the malolactic fermentation is not always compatible with certain styles of wine. Commercial wine yeast strains of Saccharomyces are generally unable to degrade i -malic acid effectively in grape must during alcoholic fermentation, with relatively minor modifications in total acidity during vinification. Functional expression of the malolactic pathway genes, i.e. the malate transporter (mael) of Schizosaccharomyces pombe and the malolactic enzyme (mleA) from Oenococcus oeni in wine yeasts, has paved the way for the construction of malate-degrading strains of Saccharomyces for commercial winemaking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae.

Recombinant strains of Saccharomyces cerevisiae with the ability to reduce wine acidity could have a significant influence on the future production of quality wines, especially in cool climate regions. L-Malic acid and L-tartaric acid contribute largely to the acid content of grapes and wine. The wine yeast S. cerevisiae is unable to effectively degrade L-malic acid, whereas the fission yeast S...

متن کامل

Genetic Engineering of an Industrial Strain of Saccharomyces cerevisiae for L-Malic Acid Degradation via an Efficient Malo-Ethanolic Pathway

The optimal ratio of L-malic and L-tartaric acid in relation to other wine components is one of the most important aspects that ultimately determine wine quality during winemaking. Winemakers routinely rely on the judicious use of malolactic fermentation (MLF) after alcoholic fermentation to deacidify and stabilise their wines. However, due to the unreliability of the process and unsuitable sen...

متن کامل

The Effect of DL-Malic Acid on the Metabolism of L-Malic Acid during Wine Alcoholic Fermentation

Insufficient wine acidity can affect wine quality and stability. To overcome this problem, DL-malic acid can be added to the grape juice prior to fermentation. We have investigated the effect of DL-malic acid on wine fermentations and its influence on the final concentration of L-malic acid, naturally present in grape juice. To this end yeast strains that metabolise L-malic acid in different wa...

متن کامل

Control of flavor development in wine during and after malolactic fermentation by Oenococcus oeni.

During malolactic fermentation in wine by Oenococcus oeni, the degradation of citric acid was delayed compared to the degradation of malic acid. The maximum concentration of diacetyl, an intermediary compound in the citric acid metabolism with a buttery or nutty flavor, coincided with the exhaustion of malic acid in the wine. The maximum concentration of diacetyl obtained during malolactic ferm...

متن کامل

The Biochemistry of Malic Acid Metabolism by Wine Yeasts - A Review

L-Malic acid is an essential intermediate of cell metabolism and the D,L-racemic mixture is used as an acidulant in a variety of foods and beverages. In the wine industry, it plays an important role during grape must fermentation, contributing to the "fixed acidity" that is important. The latter is important in defining the quality of wine. Genetic and biochemical characterisation of the L-mala...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006